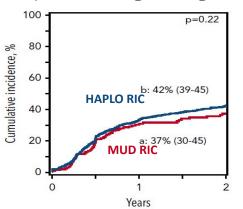


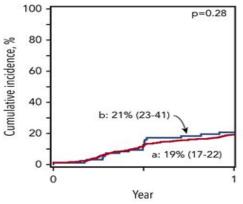

# Background

- Standard alloSCT can be curative for several high-risk hematologic malignancies
  - Access was previously limited to patients with a fully-matched donor
- The introduction of PTCy for GvHD prophylaxis has increased the use of haploidentical (haplo) donors
- PTCy-based "conventional" transplants remain challenging:
  - AE profile (CRS, delayed engraftment & T-cell reconstitution, mucositis, infections, cardiac toxicity, and increased NRM)
  - Increased relapse rates

References: Abboud R, et al. *Bone Marrow Transplant*. 2021;56(11):2763–2770; Bolaños-Meade GM, et al. *N Engl J Med*. 2023; 388(25):2338–2348. Duléry R, et al. *JACC CardioOncol*. 2021; 3(2):250–259; Hoover A, et al. *Blood*. 2022; 140 (Supplement 1):282–283; Nagler A, Tsirigotis P. *Bone Marrow Transplant*. 2022; 57(11):1640–1641.


Abbreviations: alloSCT, allogeneic hematopoietic stem cell transplants; CRS, cytokine release syndrome; GvHD, graft vs. host disease; MAC, myeloablative conditioning; PTCy, post-transplant cyclophosphamide; RIC, reduced intensity conditioning

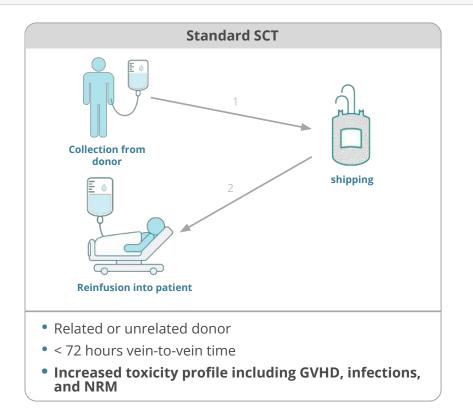


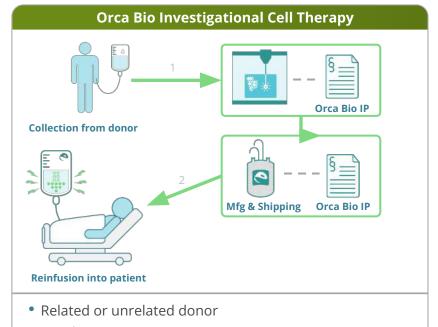

# Background

· GvHD-and-relapse-free survival rates (GRFS) in this population remain low

Relapse following RIC regimens




#### Relapse & GvHD following MAC




| Myeloablative regimen             |            |
|-----------------------------------|------------|
| Day-28 neutrophil recovery        | 94 (92-95) |
| Day-100 platelet recovery         | 87 (85-89) |
| 1-y graft failure                 | 4 (3-6)    |
| Day-100 grades 2 to 4 acute GvHD  | 33 (30-37) |
| Day-100 grades 3 and 4 acute GvHD | 10 (8-12)  |
| 1-y chronic GvHD                  | 33 (30-36) |



#### High-Precision Cell Therapies as Alternative to Standard SCT



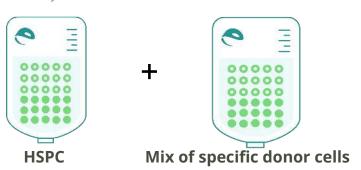


- < 72 hours vein-to-vein time</p>
- Early clinical data have shown improved clinical outcomes with significantly reduced toxicity



#### Orca-Q: Improves Haplo SCT Outcomes Via Allograft Optimization

#### **Conventional Transplants**


Uncontrolled mix of over 50 cell types



Hematopoietic stem cells
Progenitor cells
Conventional T cells
T regulatory cells
Memory cells
NK cells
Invariant NKT cells
Dendritic cells
Myeloid derived suppressor cells

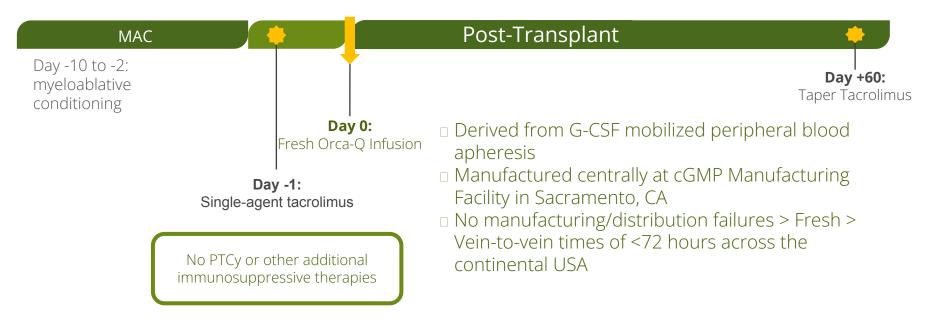
#### **Orca-Q Cell Therapy**

Fully Defined Stem and Immune Cells



| High Purity Cell Type | Intended Use                                                              |
|-----------------------|---------------------------------------------------------------------------|
| HSPCs                 | Reconstitute blood system<br>Long term reconstitution of immune<br>system |
| Regulatory T cells    | GvHD control                                                              |
| iNK T cells           | Enhance regulatory T cell function                                        |
| CD4+/CD8+ T cell      | Graft vs. infection                                                       |
| subsets               | Graft vs. leukemia                                                        |




## Orca-Q: Study Design, Key Eligibility and Outcomes

- •Phase 1, multi-center, dose expansion (NCT03802695)
- ·Haplo SCT with negative DSA
  - ✓ Haploidentical (≥ 4/8 but < 7/8 matched related donor at HLA-A, -B, -C, and -DRB1)
    </p>
- •Adult patients (18 to 65 years) with high-risk hematologic malignancies
  - ✓ Acute leukemia (AML, ALL)
  - ✓ Myelodysplastic syndrome (very high- or high-risk)
  - ✓ Myelofibrosis
- •Eligible for MAC
  - ✓ HCT-CI ≤ 4
  - ✓ KPS ≥ 70
  - ✓ Adequate organ function
- Primary Endpoints
  - ✓ Dose-limiting toxicities
  - ✔ Primary graft failure

Abbreviations: ALL, acute lymphocytic leukemia; AML, acute myelogenous leukemia; CRS, cytokine release syndrome; DSA, donor-specific antibodies; HLA, human leukocyte antigen; transplantation; MAC, myeloablative conditioning; SCT, stem cell



### Orca-Q Treatment Regimen



Abbreviations: G-CSF, granulocyte colony stimulating factor; MAC, myeloablative conditioning; PTCy, post-transplant cyclophosphamide



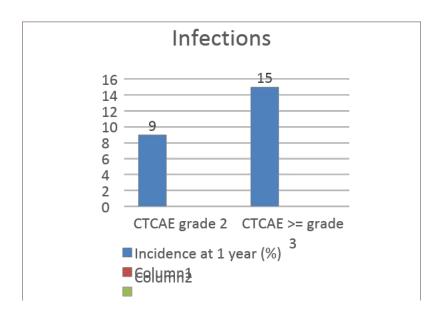
# Orca-Q Baseline Characteristics

| Patients N = 33                                                                                    |                                               |  |
|----------------------------------------------------------------------------------------------------|-----------------------------------------------|--|
| Median age, years [range]                                                                          | 43 [21–63]                                    |  |
| Female sex, n (%)                                                                                  | 9 (27)                                        |  |
| Hispanic or Latino Ethnicity, n<br>(%)                                                             | 10 (30.3)                                     |  |
| Race, n (%) Asian Black or African American White Other                                            | 5 (15.2)<br>7 (21.2)<br>14 (42.4)<br>7 (21.2) |  |
| Primary disease, n (%) Acute lymphoid leukemia Acute myeloid leukemia Chronic myelogenous leukemia | 10 (30.3)<br>21 (63.3)<br>2 (6.1)             |  |
| Disease Risk Index, n (%) High/Very High Intermediate N/A                                          | 6 (18)<br>26 (79)<br>1 (3)                    |  |

| Disease status at<br>transplantation<br>CR1<br>CR2<br>CML accel phase | 24<br>8<br>1           |
|-----------------------------------------------------------------------|------------------------|
| Conditioning regimen, n (%)<br>TBI-based<br>Busulfan-based            | 17 (51.5)<br>16 (48.5) |
| Donor<br>Sex, n                                                       |                        |
| Female                                                                | 9                      |
| Male                                                                  | 24                     |
| CMV status, n (%)                                                     |                        |
| Positive                                                              | 10 (30.3)              |
| Negative/Not detected                                                 | 12 (36.3)              |
| N/A                                                                   | 11 (33.3)              |

Abbreviations: CMV, Cytomegalovirus; CR1, first complete remission; CR2, second complete remission; CR3, third or subsequent complete remission; IPSS-R, Revised International Prognostic Scoring System; NA, not applicable; Q1, first quartile; Q3, third quartile; SD, standard deviation; TBI, total body irradiation.




8

## Rapid Engraftment Observed in Orca-Q Patients

- None of the patients had primary graft failure
- All patients engrafted with median time:
  - Neutrophils 12.0 days (range: 8 25)
  - Platelets 15.5 days (range: 8 79)
- Two patients had secondary graft failure
- Grade 1-2 CRS: 3 patients (9%)
  - Grade 1: 2 patients
  - Grade 2: 1 patient



#### Low Incidence of Severe Infections



Abbreviations: CTCAE, common terminology criteria for adverse events (v5); GvHD, graft vs. host disease; MAGIC, Mt. Sinai Acute GvHD International Consortium

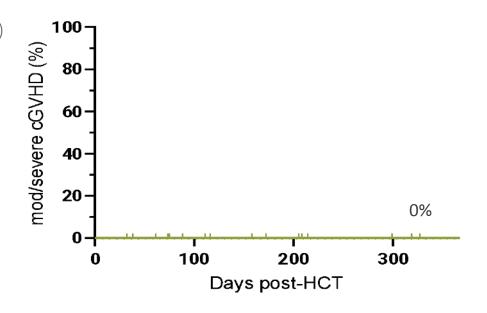




#### Low Incidence of Acute GvHD

Acute Grade 2-4 GvHD\*: ☐ 5 events (15%) Grade 3-4 acute GvHD\*: □Grade 3 - 1 event □Grade 4 – 0 events

\*assessed via MAGIC criteria


Abbreviations: CTCAE, common terminology criteria for adverse events (v5); GvHD, graft vs. host disease; MAGIC, Mt. Sinai Acute GvHD International Consortium





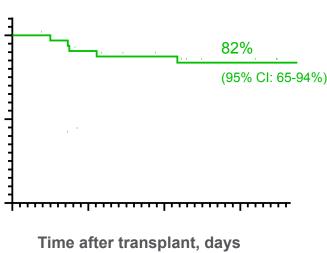
# No Moderate-to-Severe cGvHD at ~ 1 Year Median Follow-up

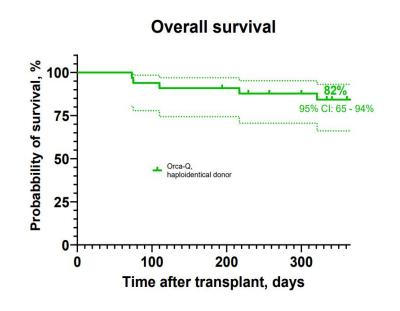
- Median follow-up 375 days (range: 73 1384)
- No Orca-Q patients have developed moderate-to-severe chronic GvHD (cGvHD)\*
- Historical cohorts: incidence of chronic GvHD after haplo SCT w/PTCy is 24-33% at 1 year



Jagasia et al., Biol Blood Marrow Transplant 2015; 21:389-401.




cGVHD, chronic graft-versus-host disease; GVHD, graft-versus-host disease; haplo-HCT, haploidentical hematopoietic cell transplantation; HCT, hematopoietic cell


<sup>\*</sup> per NIH consensus criteria (2015)



## GRFS & Overall Survival Remain Encouraging







Modified GRFS: Grade3-4 aGvHD, moderate/severe cGvHD, disease relapse, or death from any cause



Abbreviations: GRFS, GvHD-free/relapse-free survival; GvHD, graft-versus-host disease; haplo alloHSCT, haploidentical hematopoietic stem cell transplantation; HCT, hematopoietic cell transplantation; MAC, myeloablative conditioning; PTCy, post-transplant cyclophosphamide. Reference. Sanz, J, et al. J Hematol Oncol. 2020; 13:46. https://doi.org/10.1186/s13045-020-00882-6



#### Conclusions

- Our findings reveal promising safety and efficacy outcomes using Orca-Q cell therapy for haplo-SCT
  - Despite the use of MAC without PTCy and only single-agent tacrolimus
  - Low incidence of severe acute and chronic GVHD
- No new safety signals in this haplo setting were identified
- Very encouraging 1-year GvHD-free, relapse-free survival of 82%
- This phase 1 study (NCT03802695) continues to enroll patients across the US



