

Orca-Q Demonstrates Favorable GvHD-and-Relapse-Free Survival in Haploidentical Transplants without Post-Transplant Cyclophosphamide

Samer A Srour, MD, MS¹, Amandeep Salhotra, MD², Rasmus T Hoeg, MD³, Ayman Saad, MB/BCH⁴, Everett H Meyer, MD, PhD⁵, Anna Pavlova, MD, PhD⁶, Edmund K. Waller, MD, PhD⁷, Mwe Mwe Chao, MD⁸, J Scott McClellan, MD, PhD⁸, Nathaniel B Fernhoff, PhD⁸, Robert Lowsky, MD⁵ and Mehrdad Abedi, MD³

Background

- Allogeneic stem cell transplantation (allo SCT) is curative for several high-risk hematologic malignancies
- Post-transplant cyclophosphamide (PTCy) has enabled larger number of patients to receive allo SCT using alternative Haploidentical donors
- However, GvHD-and-relapse-free survival rates (GRFS) in this population remain low

Relapse following RIC regimens

Relapse & GvHD following MAC

Myeloablative regimen	
Day-28 neutrophil recovery	94 (92-95)
Day-100 platelet recovery	87 (85-89)
1-y graft failure	4 (3-6)
Day-100 grades 2 to 4 acute GvHD	33 (30-37)
Day-100 grades 3 and 4 acute GvHD	10 (8-12)
1-y chronic GvHD	33 (30-36)

Can We Improve Haplo SCT Outcomes by Optimizing Allograft?

Conventional Transplants Uncontrolled mix of over 50 cell types

Hematopoietic stem cells
Progenitor cells
Conventional T cells
T regulatory cells
Memory cells
NK cells
Invariant NKT cells
Dendritic cells
Myeloid derived suppressor cells

Orca-Q Precision-Engineered Cell Therapy Fully Defined Stem and Immune Cells

Cell Type	Intended Use
High purity HSPCs	Reconstitute blood system Long term reconstitution of immune system
High purity Tregs	GvHD control
High purity iNKT cells	Enhance Treg function
High purity CD4+/CD8+ Tcell subsets	Graft vs. infection
	Graft vs. leukemia

Study Hypothesis and Objectives

Haplo SCT	RIC	MAC	MA Orca-Q
GVHD Control	++	+	+++
Disease Control	+	++(+)	++(+)
Rapid Engraftment	++	++	+++
Infection Control	++	++	++
Pharmacological Prophylaxis	PTCy + Tacrolimus + MMF	PTCy + Tacrolimus + MMF	(Tacrolimus)

Orca-Q is an investigational, precision-engineered cell therapy comprises of stem cells and propriety mix of immune cells that is hypothesized to reduce GvHD, relapse, and serious infections

This study explores the role of Orca-Q in patients receiving haplo SCT using MAC and with single agent Tacrolimus GvHD prophylaxis

Study Design and Key Eligibility for Orca-Q

- Phase 1, multi-center, dose expansion (NCT03802695)
- Haplo SCT with negative DSA
 - ✓ Haploidentical (≥ 4/8 but < 7/8 matched related donor at HLA-A, -B, -C, and -DRB1)
 </p>
- Adult patients (18 to 65 years) with high-risk hematologic malignancies
 - ✓ Acute leukemia (AML, ALL)
 - ✓ Myelodysplastic syndrome (very high- or high-risk)
 - Myelofibrosis
- Eligible for MAC
 - ✓ HCT-CI ≤ 4
 - ✓ KPS ≥ 70
 - ✓ Adequate organ function

Orca-Q Treatment Schedule Using MAC and Single Agent GvHD Prophylaxis with Tacrolimus

SOC

Baseline Characteristics

26 patients enrolled between January 2019 – July 2022

Parameter	n = 26
Median age (range), years	43 (21-63)
Gender	
Male	18 (69%)
Female	8 (31%)
Race/Ethnicity	
Hispanic/Latino	10 (39%)
White	7 (27%)
African American	4 (15%)
Asian	5 (19%)
Disease subtype	
AML	15 (58%)
ALL	9 (34%)
CML (blast phase)	2 (8%)
Disease risk index	
High/Very-high	6 (23%)
Intermediate	17 (65%)
Low	3 (12%)
Donor median age (range), years	36 (18-58)
Donor gender	
Female	12
Male	14
Donor CMV status	
Positive	17
Negative	9
Myeloablative regimen	
TBI-based	16 (62%)
BFT	10 (38%)

Rapid Engraftment Observed in Orca-Q Patients

- None of the patients had primary graft failure
- Median time to neutrophil and platelet engraftments were 12 and 16 days, respectively
- Two patients experienced secondary graft failure
- No Grade > 1 CRS was observed; Two patients had Grade 1 CRS

Severe Infections were Uncommon in Orca-Q Recipients

- CMV viremia was reported in 4 patients (15%); no CMV-related end-organ damage noted
- EBV viremia reported in 1 patient; no PTLD observed
- · 2 patients died of infectious causes
 - COVID-19 pneumonia (n=1)
 - Pulmonary aspergillosis (n=1)

Low Incidence of Acute Graft-vs-Host Disease

 Despite using only single-agent tacrolimus as GvHD prophylaxis in the haploidentical transplant setting, aGvHD was rare

No Moderate-to-Severe cGvHD has Occurred

- Median follow-up 211 (32-1125) days
- Nine patients > 1 year
- Of the 16 patients with > 3 months follow-up, only 1 developed mild cGvHD
- No Orca-Q patients have developed moderate-to-severe cGvHD
- This compares favorably to the 24% -33% rate of chronic GvHD post haplo-HCT in various historical cohorts

Encouraging GvHD-and-Relapse Free and Overall Survival

Conclusions

- Our findings demonstrate very encouraging outcomes with Orca-Q in the Haplo SCT setting using myeloablative conditioning and only single agent tacrolimus
 - Low rates of overall and severe aGvHD and cGvHD
 - Low adverse event profile
 - Improved GRFS
- The phase 1 study continues to enroll patients across the U.S.

Acknowledgements

Thank you to the patients, caregivers, and trial site staff who made this study possible

PARTICIPATING CENTERS

City of Hope

Emory University

University of California
Davis

The Ohio State University

Stanford Health Care

MD Anderson Cancer Center

